RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2022, том 23, выпуск 3, страницы 118–132 (Mi cheb1200)

О подгруппах в группах Артина с древесной структурой

И. В. Добрынина

Академия гражданской защиты МЧС России (г. Москва)

Аннотация: В статье автор продолжает рассматривать вопросы, связанные с проблемой свободы в группах Артина с древесной структурой и опубликованные совместно с В. Н. Безверхним в Чебышевском сборнике в 2014 году. В частности, доказывается следующая теорема о подгруппах для групп Артина с древесной структурой: если $H$ – конечно порожденная подгруппа группы Артина с древесной структурой, причем пересечение $H$ с любой подгруппой, сопряженной циклической подгруппе. порожденной образующим элементом группы, есть единичная подгруппа, то существует алгоритм, описывающий процесс построения свободных подгрупп в $H$.
Изучением свободных подгрупп в различных классах групп занимались многие выдающиеся математики, основополагающие результаты изложены в ряде учебников по теории групп, монографиях и статьях.
Группы Артина активно изучаются с начала прошлого века. Если группе Артина соответствует конечный дерево-граф такой, что его вершинам соответствуют образующие группы, а всякому ребру, соединяющему вершины, соответствует определяющее соотношение, связывающее соответствующие образующие, то мы имеем группу Артина с древесной структурой.
Группу Артина с древесной структурой можно представить как древесное произведение двупорожденных групп Артина, объединенных по бесконечным циклическим подгруппам.
В процессе доказательства основного результата использовались: приведение множества образующих к специальному множеству, введенному В. Н. Безверхним как обобщение нильсеновского множества на свободные произведения групп с объединением, а также представление подгруппы в виде свободного произведения групп и задание группы с помощью графа.

Ключевые слова: группа Артина с древесной структурой, подгруппа, свободное произведение групп с объединением.

УДК: 512.54

Поступила в редакцию: 26.12.2021
Принята в печать: 14.09.2022

DOI: 10.22405/2226-8383-2022-23-3-118-132



© МИАН, 2024