RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2022, том 23, выпуск 4, страницы 64–76 (Mi cheb1223)

Эта публикация цитируется в 2 статьях

Обратная задача для основного моноида типа $q$

Н. Н. Добровольскийa, И. Ю. Реброваb, Н. М. Добровольскийb

a Тульский государственный университет (г. Тула)
b Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула)

Аннотация: В работе для произвольного основного моноида ${M(\mathbb{P}(q))}$ типа $q$ решается обратная задача, то есть нахождение асимптотики для функции распределения элементов моноида ${M(\mathbb{P}(q))}$, исходя из асимптотики распределения псевдопростых чисел $\mathbb{P}(q)$ типа $q$.
Для решения этой задачи рассматриваются два гомоморфизма основного моноида ${M(\mathbb{P}(q))}$ типа $q$ и задача о распределении сводится к аддитивной задаче Ингама.
Показано, что для этого класса моноидов понятие степенной плотности не работает. Введено новое понятие $C$ логарифмической $\theta$-степенной плотности.
Показано, что любой моноид ${M(\mathbb{P}(q))}$ для последовательности псевдопростых чисел $\mathbb{P}(q)$ типа $q$ имеет оценки сверху и снизу для функции распределения элементов основного моноида ${M(\mathbb{P}(q))}$ типа $q$.
Показано, что если $C$ логарифмическая $\theta$-степенная плотность для основного моноида ${M(\mathbb{P}(q))}$ типа $q$ существует, то $\theta=\frac{1}{2}$ и для константы $C$ справедливы неравенства $ \pi\sqrt{\frac{1}{3\ln q}}\le C\le \pi\sqrt{\frac{2}{3\ln q}}. $
Полученные результаты аналогичны ранее полученным авторами при решении обратной задачи для моноидов, порожденных произвольной экспоненциальной последовательностью простых чисел типа $q$.
Для основных моноидов ${M(\mathbb{P}(q))}$ типа $q$ остается открытым вопрос о существовании $C$ логарифмической $\frac{1}{2}$-степенной плотности и величине константы $C$.

Ключевые слова: дзета-функция Римана, ряд Дирихле, дзета-функция моноида натуральных чисел, эйлерово произведение, экспоненциальная последовательность простых, основной моноид ${M(\mathbb{P}(q))}$ типа $q$, $C$ логарифмическая $\theta$-степенная плотность.

УДК: 511.3

Поступила в редакцию: 17.06.2022
Принята в печать: 08.12.2022

DOI: 10.22405/2226-8383-2022-23-4-64-76



© МИАН, 2024