Аннотация:
В работе вводится новое понятие — система совместных полиномов Туэ для системы целых алгебраических иррациональностей. Проводится параллельное изложение элементов теории полиномов Туэ для одной алгебраической иррациональности и основ теории для системы совместных полиномов Туэ для системы целых алгебраических иррациональностей. Сформулирована гипотеза об аналоге теоремы М. Н. Добровольского (старшего) о том, что для каждого порядка $j$ существуют два основных полинома Туэ $j$-ого порядка, через которые выражаются все остальные. Для системы двух квадратичных иррациональностей, например, $\sqrt{2}$ и $\sqrt{3}$, найдены системы совместных основные полиномов порядка не ниже $0$-го, $1$-го и $2$-го. Доказана теорема об общем виде пары основных полиномов Туэ произвольного порядка $n$ для квадратичной иррациональности $\sqrt{c}$, где $c$ — бесквадратное натуральное число.
Ключевые слова:минимальный многочлен, приведённая алгебраическая иррациональность, остаточные дроби, цепные дроби, пара Туэ, система совместных полиномов Туэ.
УДК:
511.3
Поступила в редакцию: 17.06.2022 Принята в печать: 08.12.2022