Аннотация:
В пространствах с весом $|x|^{-1}v_k(x)$, где $v_k(x)$ — вес Данкля, действует $(k,1)$-обобщенное преобразование Фурье. Гармонический анализ в этих пространствах важен, в частности, в задачах квантовой механики. Недавно для $(k,1)$-обобщенного преобразования Фурье был определен потенциал Рисса и для него доказано $(L^p,L^q)$-неравенство с радиальными степенными весами, являющееся аналогом известного неравенства Стейна — Вейса для классического потенциала Рисса. В работе этот результат обобщается на случай радиальных кусочно-степенных весов. Ранее аналогичное неравенство было доказано для потенциала Данкля — Рисса.