RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2023, том 24, выпуск 1, страницы 50–68 (Mi cheb1282)

Эта публикация цитируется в 2 статьях

Регуляризованная асимптотика решения сингулярно возмущенной смешанной задачи на полуоси для уравнения типа Шредингера при наличии сильной точки поворота у предельного оператора

А. Г. Елисеев, П. В. Кириченко

Национальный исследовательский университет «МЭИ» (г. Москва)

Аннотация: В предложенной работе выполнено построение регуляризованной асимптотики решения сингулярно возмущенной неоднородной смешанной задачи на полуоси, возникающей при квазиклассическом переходе в уравнении Шредингера в координатном представлении. Выбранный в работе профиль потенциальной энергии приводит к особенности в спектре предельного оператора в виде сильной точки поворота. Опираясь на идеи асимптотического интегрирования задач с нестабильным спектром С.А. Ломова и А.Г. Елисеева, указано каким образом и из каких соображений следует вводить регуляризирующие функции и дополнительные регуляризирующие операторы, подробно описан формализм метода регуляризации для поставленной задачи, проведено обоснование этого алгоритма и построено асимптотической решение любого порядка по малому параметру.

Ключевые слова: сингулярно возмущенная задача, асимптотическое решение, метод регуляризации, точка поворота.

УДК: 517.955.8

Поступила в редакцию: 13.12.2022
Принята в печать: 24.04.2023

DOI: 10.22405/2226-8383-2023-24-1-50-68



© МИАН, 2024