Регуляризованная асимптотика решения сингулярно возмущенной смешанной задачи на полуоси для уравнения типа Шредингера при наличии сильной точки поворота у предельного оператора
Аннотация:
В предложенной работе выполнено построение регуляризованной асимптотики решения сингулярно возмущенной неоднородной смешанной задачи на полуоси, возникающей при квазиклассическом переходе в уравнении Шредингера в координатном представлении. Выбранный в работе профиль потенциальной энергии приводит к особенности в спектре предельного оператора в виде сильной точки поворота. Опираясь на идеи асимптотического интегрирования задач с нестабильным спектром С.А. Ломова и А.Г. Елисеева, указано каким образом и из каких соображений следует вводить регуляризирующие функции и дополнительные регуляризирующие операторы, подробно описан формализм метода регуляризации для поставленной задачи, проведено обоснование этого алгоритма и построено асимптотической решение любого порядка по малому параметру.
Ключевые слова:сингулярно возмущенная задача, асимптотическое решение, метод регуляризации, точка поворота.
УДК:
517.955.8
Поступила в редакцию: 13.12.2022 Принята в печать: 24.04.2023