Аннотация:
Вороной получил для совершенных форм три результата. Во-первых, он доказал, что форма, отвечающая плотнейшей упаковке, является совершенной. Во-вторых, он установил, что совершенных форм от данного числа переменных конечное число. И самое главное, в-третьих, Вороной предложил метод нахождения всех совершенных форм. Этот метод опирается на так называемый совершенный полиэдр, весьма сложный многомерный многогранник, введенный Вороным. В принципе, найдя методом Вороного все совершенные формы, можно вычислить плотности для конечного числа соответствующих упаковок и выделить те, которые отвечают максимальному значению. Классической задачи Вороного отыскания совершенных форм, тесно связанной с известной проблемой Эрмита арифметические минимумы положительных квадратичных форм. Они появились и в работах С.Л.Соболева и Х.М. Шадиметова в связи с построением решетчатых оптимальных кубатурных формул. В настоящей работы предлагается усовершенствованные алгоритма Вороного для вычислении окрестности Вороного совершенной формы от много переменных и с помощью этого алгоритма вычислена окрестность Вороного главной совершенной формы от пяти переменных.