RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2023, том 24, выпуск 4, страницы 33–47 (Mi cheb1346)

Methods for determining optimal mixed strategies in matrix games with correlated random payoffs

[Методы нахождения оптимальных смешанных стратегий в матричных играх с коррелированными случайными выигрышами]

V. A. Gorelikab, T. V. Zolotovac

a Federal Research Center “Informatics and Management” of the Russian Academy of Sciences (Moscow)
b Moscow State Pedagogical University (Moscow)
c Financial University under the Government of the Russian Federation (Moscow)

Аннотация: Рассматривается игра с природой при известных вероятностях состояний. Предлагается принцип оптимальности для принятия решений для игр с природой, основанный на оценках эффективности и риска. В отличие от традиционного подхода к определению смешанной стратегии в теории игр, в данной работе рассматривается возможность корреляционной зависимости случайных значений выигрышей для начальных альтернатив. Предлагаются два варианта реализации двухкритериального подхода к определению принципа оптимальности. Первый вариант — минимизировать дисперсию как оценку риска с более низким порогом математического ожидания выигрыша. Второй вариант — максимизировать математическое ожидание выигрыша с верхним порогом дисперсии. Получены аналитические решения обеих задач. Рассмотрено применение полученных результатов на примере процесса инвестирования на фондовом рынке. Инвестор, как правило, формирует портфель не сразу, а в виде последовательного процесса приобретения того или иного финансового актива. В этом случае смешанная стратегия может быть реализована в ее имманентном смысле, т.е. покупки осуществляются случайным образом с распределением, определяемым ранее найденным оптимальным решением. Если этот процесс достаточно длительный, то структура портфеля будет примерно соответствовать типу смешанной стратегии. Такой подход использования игры с природой с учетом корреляционной зависимости случайного выигрыша чистых стратегий может быть применен и к задачам принятия решений в других областях управления рисками.

Ключевые слова: управление риском, принцип оптимальности, двухкритериальный подход, математическое ожидание, стандартное отклонение.

УДК: 519.832

Поступила в редакцию: 23.08.2023
Принята в печать: 11.12.2023

Язык публикации: английский

DOI: 10.22405/2226-8383-2023-24-4-33-47



© МИАН, 2025