Аннотация:
В теории гиперболической дзета-функции решёток значительную роль играет теорема Бахвалова, в которой величина дзета-функции решётки решений линейного сравнения оценивается через гиперболический параметр решётки.
В монографии Н. М. Коробова 1963 года эта теорема доказывается методом, отличным от первоначальной работы Н. С. Бахвалова. В этом методе центральную роль играет лемма о количестве решений линейного сравнения в прямоугольной области.
В 2002 году В. А. Быковский получил принципиально новые оценки снизу и сверху, которые совпадали по порядку.
В работе даются новые оценки количества точек решетки решений линейного сравнения в прямоугольных областях. Это позволяет доказать усиленную теорему Бахвалова—Коробова—Быковского об оценки гиперболической дзета-функции решётки решений линейного сравнения.
Отличия теоремы о количестве точек решетки решений линейного сравнения в прямоугольных областях от соответствующей леммы Коробова состоит в том, что вместо оценки через отношение объёма прямоугольной области к гиперболическому параметру даётся модифицированная оценка Быковского через минимальные решения линейного сравнения.
Использование теоремы о количестве точек решетки решений линейного сравнения в прямоугольных областях дополняется обобщённой леммой Коробова об оценки остаточного ряда и рядом других модификаций в доказательстве теоремы Бахвалова––Коробова, что и позволило доказать усиленную теорему Бахвалова—Коробова—Быковского об оценки гиперболической дзета-функции решётки решений линейного сравнения.
Ключевые слова:параллелепипедальная сетка, квадратурные формулы, метод оптимальных коэффициентов, количественная мера качества сетки.
УДК:
511.3
Поступила в редакцию: 20.09.2023 Принята в печать: 11.12.2023