Аннотация:
Рассматривается регрессионная постановка задачи оценивания функции математического ожидания некоторого почти наверное непрерывного случайного процесса, когда зашумленные значения независимых копий случайного процесса наблюдаются в некоторых известных наборах точек (вообще говоря, случайных), при этом количество наблюдений для каждой из копий случайно и совокупность этих величин по всем сериям не обязательно состоит из независимых и одинаково распределенных компонент. Данная постановка включает в себя два наиболее популярных в научной литературе варианта разреженных данных, когда либо количества наблюдений в сериях представляют собой независимые одинаково распределенные случайные величины, либо количества наблюдений в каждой серии неслучайны и равномерно ограничены по всем сериям.
В работе предложены новые оценки ядерного типа для функции математического ожидания случайного процесса. Доказана равномерная состоятельность новых ядерных оценок при весьма слабых и универсальных ограничениях касательно стохастической природы временных точек наблюдений: требуется лишь, чтобы вся совокупность этих точек с высокой вероятностью образовывала бы измельчающееся разбиение области определения исходного случайного процесса.