RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2010, том 11, выпуск 1, страницы 68–73 (Mi cheb188)

Эта публикация цитируется в 4 статьях

Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction

A. D. Bruno

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow

Аннотация: Let in a three-dimensional real space two forms be given: a linear form and a quadratic one which is a product of two complex conjugate linear forms. Their root sets are a plane and a straight line correspondingly. We assume that the line does not lie in the plane. Voronoi (1896) and author (2006) proposed two different algorithms for computation of integer points giving the best approximations to roots of these two forms. The both algorithms are one-way: the Voronoi algorithms is directed to the plane and the authors algorithms is directed to the line.
Here we propose an algorithm, which works in both directions. We give also a survey of results on such approach to simultaneous Diophantine approximations in any dimensions.

MSC: 11J70

Поступила в редакцию: 25.05.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024