Аннотация:
Исследуется движение спутника в гравитационном поле вращающейся планеты. Планета моделируется телом, состоящим из твердого ядра и вязкоупругой оболочки из материала Кельвина–Фойгта. Спутник моделируется материальной точкой. Из вариационного принципа Даламбера–Лагранжа выводится система интегро-дифференциальных уравнений движения механической системы в соответствии с линейной моделью теории упругости. С помощью асимптотического метода разделения движений строится приближенная система уравнений движения в векторном виде, описывающая динамику механической системы с учетом возмущений, вызванных упругостью и диссипацией. Выводится усредненная система дифференциальных уравнений, описывающая эволюцию параметров орбиты спутника. Для частных случаев построены фазовые траектории, найдены стационарные решения и исследована их устойчивость. В качестве примеров рассмотрены некоторые планеты Солнечной системы и их спутники.