Эта публикация цитируется в
1 статье
О решении обобщенного матричного уравнения Сильвестра
С. М. Чуйко Донбасский государственный педагогический университет, 84112, Украина, г. Славянск
Аннотация:
Матричные уравнения Ляпунова, а также их обобщения — матричные уравнения Сильвестра широко используются в теории устойчивости движения, теории управления, при решении обыкновенных дифференциальных уравнений Риккати и Бернулли, при решении уравнений в частных производных, а также в задачах восстановления изображений. Если структура общего решения однородной части уравнения Ляпунова хорошо изучена, то решение неоднородного уравнения Сильвестра и, в частности, уравнения Ляпунова достаточно громоздко.
Наиболее распространенным требованием при решении матричных уравнений Сильвестра и, в частности, уравнения Ляпунова, является условие единственности решения. Ранее, в статье А. А. Бойчука и С. А. Кривошеи с использованием теории обобщенных обратных операторов, установлен критерий разрешимости матричных уравнений
$AX-XB=D$ и
$X-AXB=D$ типа Ляпунова и исследована структура семейства их решений. В статье А. А. Бойчука и С. А. Кривошеи использовано псевдообращение линейного матричного оператора
$L$, соответствующего однородной части уравнений
$AX-XB=D$ и
$X-AXB=D$ типа Ляпунова.
Используя технику псевдообратных (по Муру–Пенроузу) матриц и проекторов, в статье предложены оригинальные условия разрешимости, а также схема нахождения семейства линейно независимых решений неоднородного обобщенного матричного уравнения Сильвестра и, в частности, уравнения Ляпунова, в общем случае, когда линейный матричный оператор
$L$, соответствующий однородной части обобщенного матричного уравнения Сильвестра не имеет обратного.
Найдено выражение для семейства линейно независимых решений неоднородного обобщенного матричного уравнения Сильвестра и, в частности, уравнения Ляпунова с использованием проекторов и псевдообратных (по Муру–Пенроузу) матриц. Этот результат является обобщением соответствующих результатов, полученных в статье А. А. Бойчука и С. А. Кривошеи, на случай линейного обобщенного матричного уравнения Сильвестра.
Предложенные условия разрешимости, а также схема построения частного решения неоднородного обобщенного матричного уравнения Сильвестра подробно проиллюстрированы на примерах.
Библиография: 19 названий.
Ключевые слова:
матричное уравнение Сильвестра, матричное уравнение Ляпунова, псевдообратные матрицы.
УДК:
517.9
MSC: 15A24,
34В15,
34C25 Поступила в редакцию: 09.12.2014