RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2016, том 17, выпуск 1, страницы 108–116 (Mi cheb456)

Эта публикация цитируется в 1 статье

О приближении значений некоторых гипергеометрических функций с иррациональными параметрами

П. Л. Иванков

Московский государственный технический университет имени Н. Э. Баумана

Аннотация: В работе рассматриваются некоторые гипергеометрические функции при специальном соотношении между их параметрами. Получены оценки снизу модулей линейных форм от значений таких функций. Обычно для получения подобных оценок используют метод Зигеля, см. [1], [2], [3, гл. 3]. При применении этого метода рассуждения начинаются с построения при помощи принципа Дирихле линейной приближающей формы, имеющей достаточно большой порядок нуля в начале координат. Используя систему дифференциальных уравнений, которой удовлетворяют рассматриваемые функции, строят затем совокупность таких форм, причем определитель, составленный из их коэффициентов, не должен быть тождественным нулем. Дальнейшие шаги состоят в переходе к числовым линейным формам и к доказательству интересующих исследователя утверждений: доказывается линейная независимость значений рассматриваемых функций или устанавливаются соответствующие количественные результаты. С помощью метода Зигеля доказаны достаточно общие теоремы, касающиеся арифметической природы значений обобщенных гипергеометрических функций, причем кроме упомянутой выше линейной независимости во многих случаях установлена также трансцендентность и алгебраическая независимость значений таких функций. Однако использование принципа Дирихле на начальном этапе ограничивает возможности метода. Его непосредственное применение возможно лишь для гипергеометрических функций с рациональными параметрами. Следует отметить также недостаточную точность получаемых этим методом количественных результатов. В связи с вышесказанным был разработан некоторый аналог метода Зигеля (см. [4]), с помощью которого в ряде случаев удалось исследовать арифметическую природу значений гипергеометрических функций также и с иррациональными параметрами.
Еще раньше, однако, стали применяться методы, основанные на эффективном построении линейной приближающей формы. С помощью таких построений была исследована арифметическая природа классических констант и были получены соответствующие количественные результаты, см., например, [5, гл. 1]. В дальнейшем выяснилось, что эффективные методы применимы и при исследовании обобщенных гипергеометрических функций. Были получены, в частности, явные формулы для коэффициентов линейных приближающих форм. В ряде случаев эти формулы позволяют реализовать схему метода Зигеля и для гипергеометрических функций с иррациональными параметрами. Если в приведенной ниже формуле (1) многочлен $a(x)$ тождественно равен единице, то полученные эффективным методом результаты носят довольно общий характер, и здесь дальнейшее развитие этого метода наталкивается на трудности принципиального характера. Если же $a(x)\not\equiv1$, то возможности эффективного метода еще не исчерпаны: результаты, полученные на сегодняшний день, могут быть обобщены и улучшены.
В теоремах, доказанных в настоящей работе, устанавливаются новые качественные и количественные результаты для некоторых гипергеометрических функций, у которых $a(x)=x+\alpha$, и многочлен $b(x)$ из (1) имеет специальный вид. Рассматривается случай иррациональных параметров, однако используемые соображения позволят, по-видимому, получить новые результаты для таких функций и в случае рациональных параметров.
Библиография: 15 названий.

Ключевые слова: обобщенные гипергеометрические функции, иррациональные параметры, оценки линейных форм.

УДК: 511.361

Поступила в редакцию: 15.12.2015
Принята в печать: 10.03.2016



Реферативные базы данных:


© МИАН, 2024