RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2016, том 17, выпуск 2, страницы 162–169 (Mi cheb486)

Эта публикация цитируется в 5 статьях

О граничном поведении одного класса рядов Дирихле

В. Н. Кузнецов, О. А. Матвеева

Саратовский национальный исследовательский государственный университет им. Н. Г. Чернышевского

Аннотация: Исследуется задача аналитического поведения рядов Дирихле,которые имеют ограниченную сумматорную функцию, на оси сходимости $\sigma = 0$. Ранее эта задача изучалась в работах авторов в случае рядов Дирихле с коэффициентами, которые определяются конечнозначными числовыми характерами, что в свою очередь было связано с решением известной гипотезы Н. Г. Чудакова о том, что конечнозначные числовые характеры, отличные от нуля почти для всех простых $p$, асимптотика сумматорных функций которых имеет линейный вид, являются характерами Дирихле. Эта гипотеза была высказана в 1950 году и до сих пор окончательно не решена. В одной из работ авторов было получено частичное решение этой гипотезы исходя из поведения соответствующего ряда Дирихле при подходе к мнимой оси. Есть основания полагать, что в этом направлении будет получено окончательное решение гипотезы Н. Г. Чудакова.
В нашем случае задача представляет интерес и в связи с получением аналитических условий почти периодичности ограниченной числовой последовательности, отличных от полученных ранее условий. Например, условий Сеге, заключающихся в наличии точек регулярности на границе сходимости соответствующего степенного ряда.
Отметим, что в основе исследований лежит, так называемый, метод редукции к степенным рядам, разработанный в начале 80х годов профессором В. Н. Кузнецовым, заключающийся в изучении взаимосвязи между аналитическими свойствами рядов Дирихле и граничным поведением соответсвующих (с теми же коэффициентами, что и у рядов Дирихле) степенных рядов. В данном случае этот метод позволил показать, что все точки мнимой оси являются точками непрерывности в широком смысле для таких рядов Дирихле. Более того, этот метод позволил построить последовательность полиномов Дирихле, сходящихся в любом прямоугольнике, расположенным в критической полосе, к функции, определенной рядом Дирихле.
Библиография: 15 названий.

Ключевые слова: ряды Дирихле, сумматорная функция коэффициентов, аппроксимационные полиномы Дирихле, характеры Дирихле.

УДК: 511.3

Поступила в редакцию: 15.02.2015
Принята в печать: 10.06.2016



Реферативные базы данных:


© МИАН, 2024