RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2016, том 17, выпуск 4, страницы 167–179 (Mi cheb524)

Эта публикация цитируется в 1 статье

О $drl$-полугруппах и $drl$-полукольцах

О. В. Чермных

Вятский государственный университет

Аннотация: В статье изучаются $drl$-полукольца. Полученные результаты верны также для $drl$-полугрупп, поскольку $drl$-полукольцом будет $drl$-полугруппа с нулевым умножением. Указанные алгебры имеют связь с двумя проблемами: 1) существует ли абстрактная конструкция, объединяющая как булевы алгебры, так и решеточно упорядоченные группы? (Г. Биркгоф); 2) рассмотреть решеточно упорядоченные полукольца (Л. Фукс). Одной из возможных конструкций, удовлетворяющей условиям первой проблемы, является $drl$-полугруппа, определенная K. L. N. Swamy в 1965 г. Как решение второй проблемы в 1981 г. Rango Rao ввел в обиход $l$-полукольцо. Для последней алгебры мы используем название $drl$-полукольца.
В настоящей статье основным объектом исследования является $drl$-полукольцо. Нами обобщаются результаты Swamy, полученные им для $drl$-полугрупп, а в некоторых случаях уточняются. Известно, что любое $drl$-полукольцо раскладывается в прямую сумму $S=L(S)\oplus R(S)$ положительно упорядоченного $drl$-полукольца $L(S)$ и $l$-кольца $R(S)$. Указывается условие, при котором $L(S)$ обладает наименьшим и наибольшим элементами (теорема 2). В теореме 3 найдены необходимые и достаточные условия разложения $drl$-полукольца в прямую сумму $l$-кольца и брауэровой решетки, а в теореме 4 — $l$-кольца и булевой алгебры. Теоремы 5 и 6 характеризуют $l$-кольцо и аддитивно сократимое $drl$-полукольцо в терминах симметрической разности. Наконец, мы показываем, что произвольная конгруэнция на $drl$-полукольце является отношением Берна.
Библиография: 11 названий.

Ключевые слова: полукольцо, $drl$-полугруппа, $drl$-полукольцо, решеточно упорядоченное кольцо.

УДК: 512.558

Поступила в редакцию: 11.05.2016
Принята в печать: 13.12.2016

DOI: 10.22405/2226-8383-2016-17-4-167-179



Реферативные базы данных:


© МИАН, 2024