RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2017, том 18, выпуск 1, страницы 123–133 (Mi cheb537)

О некоторых признаках сходимости для знакопостоянных и знакочередующихся рядов

А. И. Козкоab

a Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
b Российская академия государственной службы при Президенте РФ

Аннотация: В курсе анализа хорошо изучены свойства числовых рядов $\sum_{n=1}^{+\infty}a_n$, которые на бесконечности имеют асимптотический рост по степеням $n$. Соответствующие признаки сходимости были заложены ещё в работах Гаусса. В работе изучается необходимые и достаточные условия на положительную (а также знакочередующуюся) последовательность чисел $\{a_n\}_{n=1}^{+\infty}$, имеющую скорость убывания (роста) в логарифмической шкале для сходимости ряда $\sum_{n=1}^{+\infty}a_n$. Приводятся примеры на использования полученных критериев сходимости, как в случае знакопостоянного ряда, так и в случае знакопеременного рада. Важность логарифмической шкалы обусловлена тем, что она встречается в различных разделах анализа и, в частности, в задаче о нахождении спектра оператора Штурма–Лиуввиля на полуоси для быстрорастущих потенциалах. В логарифмической шкале возникают и соответствующие вопросы о нахождение регуляризованных сумм для специальных потенциалов оператора Штурма–Лиуввиля на полуоси.
Библиография: 21 название.

Ключевые слова: сходимость ряда, знакопостоянный ряд, знакопеременный ряд, признак сходимости ряда, асимптотика, асимптотическое разложение, спектр оператора Штурма–Лиуввиля.

УДК: 517.521.2

Поступила в редакцию: 17.06.2016
Исправленный вариант: 13.03.2017

DOI: 10.22405/2226-8383-2017-18-1-123-133



Реферативные базы данных:


© МИАН, 2024