Аннотация:
Хорошо известно, что математически простые нелинейные системы дифференциальных уравнений могут демонстрировать хаотическое поведение. Обнаружение аттракторов хаотических систем — важная проблема нелинейной динамики. Результаты недавних исследований позволили ввести следующую классификацию периодических и хаотических аттракторов в зависимости от наличия окрестностей состояний равновесия в их области притяжения — самовозбуждающиеся и скрытые аттракторы. Присутствие скрытых аттракторов в динамических системах привлекло пристальное внимание, как к теоретическим, так и к прикладным исследованиям этого феномена. Выявление скрытых аттракторов в реальных инженерных системах чрезвычайно важно, поскольку оно позволяет предсказать неожиданные и потенциально опасные ответы системы на возмущения ее структуры. В последние три года, после обнаружения S. Jafari и J.C. Sprott хаотических систем с линией и плоскостью состояний равновесия, имеющих скрытые аттракторы, возрос интерес к системам, обладающим несчетным или бесконечным числом состояний равновесия. В настоящей работе предложены новые модели систем управления с бесконечным числом состояний равновесия, обладающие скрытыми аттракторами: кусочно-линейная система с локально устойчивым отрезком покоя и система с периодической нелинейностью и бесконечным числом состояний равновесия. Для поиска скрытых аттракторов исследуемых систем применен предложенный автором оригинальный аналитико-численный метод.
Библиография: 31 название.