RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2017, том 18, выпуск 2, страницы 205–221 (Mi cheb552)

Эта публикация цитируется в 1 статье

Двусторонние оценки гамма-функции на действительной полуоси

А. Ю. Попов

г. Москва

Аннотация: В статье получены новые двусторонние оценки гамма-функции на действительной полуоси. Эти результаты дают в качестве следствия двусторонние оценки факториала, более сильные, нежели известные ранее. Найденные двойные неравенства для $n!$ верны при всех $n \geq 1$. Для $\Gamma(x+1)$ выведен ряд оценок; одни из них верны при всех $x > 0$, другие — при всех $x \geq 1/2$, а некоторые — при всех $x \geq 1$. Основные из полученных оценок связаны с понятием обвёртывания функции её асимптотическим рядом (если этот ряд является знакопеременным) в усиленном смысле, однако такая усиленная обвёртываемость пока доказана только для нескольких первых частичных сумм асимптотического ряда. Высказана гипотеза о том, что асимптотический ряд для логарифма гамма-функции обвёртывает его в усиленном смысле. В этом же духе получены новые неравенства для чисел сочетаний из $2n$ по $n$. Эти рассмотрения свидетельствуют о перспективности дальнейших исследований в данном направлении и дают метод получения новых двойных неравенств для функций, чей асимптотический ряд является знакопеременным.
Библиография: 15 названий.

Ключевые слова: гамма-функция, двусторонние оценки, асимптотическая формула.

УДК: 517.581

Поступила в редакцию: 10.03.2017
Принята в печать: 12.06.2017

DOI: 10.22405/2226-8383-2017-18-2-205-221



Реферативные базы данных:


© МИАН, 2024