Аннотация:
Задача определения эффективного тензора упругости микронеоднородной и в общем случае макроскопичеки однородной и анизотропной композитной среды относится к проблеме взаимодействия многих тел. Решение такой задачи возможно лишь приближённо. В работе рассматривается решение такой задачи для порово-трещиноватой среды -– терригенной горной породы, упругие свойства которой анизотропные. Причем анизотропия упругих свойств вызвана различными факторами – как собственной анизотропией глинистых минералов, так и преимущественной ориентацией неизометричных неоднородностей породы. Различные методы теории эффективных сред (ТЭС) для вычисления эффективного тензора упругости порово-трещиноватых сред используют так называемые гипотезы эффективного поля. Так, например, метод Т-Матрицы, метод Мори–Танака, метод обобщенного сингулярного приближения и метод эффективного поля используют гипотезы эффективного поля в различных вариациях. Таким образом, различные методы ТЭС показывают близкие результаты. В случае горной породы, которая рассматривается как природный композит, большое значение имеет аппроксимация реальной среды некой параметрической модельной средой, отражающей основные особенности микроструктуры породы, которая, в свою очередь, является следствием особенностей формирования конкретной породы. Следовательно, выбранная модель среды и выделенные модельные параметры играют очень важную роль в моделировании. Для подтверждения этого тезиса было проведено моделирование эффективных упругих характеристик порово-трещиноватой породы двумя различными методами: Т-матрицы и обобщенного сингулярного приближения для двух разных параметрических моделей одной и той же горной породы, построенных независимо на основе визуального анализа микроструктуры породы в масштабе шлифа. Каждая из построенных моделей имеет разное количество параметров, которые также различны. Однако общим является то, что при моделировании таких пород необходимо учитывать жесткость контакта минеральных зерен и органического вещества, а также степень связности компонент. Найдены параметры каждой модели и определена область изменения пористости породы, в которой обе модели имеют сходные упругие свойства.
Ключевые слова:порово-трещиноватые среды, эффективные свойства, метод обобщенного сингулярного приближения.
УДК:519.6, 539.3
Поступила в редакцию: 22.05.2017 Исправленный вариант: 14.09.2017