RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2017, том 18, выпуск 3, страницы 210–234 (Mi cheb576)

Эта публикация цитируется в 1 статье

Интегральные формулы решений основных линейных дифференциальных уравнений математической физики с переменными коэффициентами

В. И. Горбачёв

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Аннотация: В статье рассматриваются начально-краевые задачи для линейных дифференциальных уравнений математической физики (эллиптических, гиперболических и параболических) с переменными коэффициентами, зависящими от координат и времени. Такие уравнения вместе с входными данными будем называть исходными. Уравнения с переменными коэффициентами описывают процессы в композиционных материалах, у которых механические характеристики меняются либо скачком либо непрерывно в пограничной области между фазами. Многие задачи из различных разделов линейной и нелинейной механики сводятся к решению линейных уравнений с переменными коэффициентами.
В случае периодических по координатам коэффициентов одним из популярных способов решения уравнений является метод осреднения Бахвалова–Победри (МБП), основанный на представлении решения исходной задачи в виде асимптотического ряда по степеням малого геометрического параметра, равного отношению характерного размера ячейки периодичности к характерному размеру тела. В этом методе исходная краевая задача сводится к двум рекуррентным последовательностям задач. Первая рекуррентная последовательность заключается в нахождении периодических решений вспомогательных задач в ячейке периодичности. Вторая последовательность состоит в решении начально-краевых задач для уравнения с постоянными эффективными коэффициентами. Эти коэффициенты находятся после решения на ячейке периодичности вспомогательных задач. Базой рекурсии во второй последовательности в МБП служит решение начально-краевой задачи для уравнения с эффективными коэффициентами в области определения, имеющей ту же самую форму и точно с такими же входными данными, что и исходная задача.
Входные данные в каждой из рекуррентных последовательностей на каком либо шаге находятся лишь после того как решены все предыдущие рекуррентные задачи.
В настоящей статье получены новые интегральные формулы, позволяющие выразить решение исходной задачи для уравнения с переменными коэффициентами, зависящими от координат и времени, через решение такой же задачи для уравнения с постоянными коэффициентами. Уравнение с постоянными коэффициентами называется сопутствующими уравнениями, а задача соответственно сопутствующей задачей. В ядро интегральной формулы входит функция Грина и разность коэффициентов исходного и сопутствующего уравнений. С помощью разложения сопутствующего решения в многомерный ряд Тейлора из интегральной формулы получено эквивалентное представление решения исходной задачи в виде ряда по всевозможным производным от решения сопутствующей задачи. Коэффициенты при производных называются структурными функциями. Они являются непрерывными функциями координат и времени, обращающимися в нуль при совпадении исходных и сопутствующих коэффициентов. Для определения структурных функций построена система рекуррентных уравнений. Через структурные функции определяются коэффициенты сопутствующих уравнений, совпадающие в периодическом случае с эффективными коэффициентами в МБП. В отличие от метода Бахвалова–Победри в новом подходе нужно решать одну рекуррентную последовательность задач для нахождения структурных функций и один раз решить задачу для однородного тела с эффективными характеристиками.

Ключевые слова: Уравнения математической физики, уравнения с переменными коэффициентами, интегральные формулы, осреднение дифференциальных уравнений, структурные функции, эффективные коэффициенты.

УДК: 519.6, 539.30

Поступила в редакцию: 23.06.2017
Исправленный вариант: 14.09.2017

DOI: 10.22405/2226-8383-2017-18-3-210-234



© МИАН, 2024