Аннотация:
Одним из известных направлений решения задачи аналитического продолжения рядов Дирихле является изучение свойств последовательности первообразных, возникающих в процессе итераций сумматорной функции коэффициентов ряда. На этом пути было получено, например, аналитическое продолжение дзета-функции Римана, $L$-функций Дирихле. В 1975 году Н. Г. Чудаков получил необходимое и достаточное условие аналитического продолжения рядов Дирихле как мероморфных функций с конечной функцией Линделёфа, выраженное в терминах поведения первообразных функций.
В данной статье получено необходимое и достаточное условие аналитического продолжения рядов Дирихле с конечнозначными коэффициентами целым образом на комплексную плоскость. Это условие сформулировано в терминах поведения чезаровских средних от коэффициентов ряда Дирихле. В отличие от результата Н. Г. Чудакова, где условие аналитического продолжения представлено в виде теоремы существования, здесь получен явный вид асимптотики чезаровских средних. В основе решения задачи лежит аппроксимационный подход, разработанный ранее авторами, позволивший связать решение задачи с возможностью приближения в критической полосе целых функций, определённых рядами Дирихле, полиномами Дирихле.
Ключевые слова:ряд Дирихле, аналитическое продолжение, совместное приближение функции и ее производных.
УДК:
511.3
Поступила в редакцию: 01.09.2017 Принята в печать: 14.12.2017