RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2017, том 18, выпуск 4, страницы 306–325 (Mi cheb614)

Новые свойства почти нильпотентных многообразий с целыми экспонентами

Н. П. Панов

Ульяновский государственный университет

Аннотация: Исследуются почти нильпотентные многообразия неассоциативных алгебр над полем нулевой характеристики в классе всех алгебр, удовлетворяющих тождественному соотношению $x(yz) \equiv 0$. Ранее в данном классе алгебр для любого натурального $m \ge 2$ была определена алгебра $A_m$, порождающая почти нильпотентное многообразие $var(A_m)$ экспоненциального роста с экспонентой, равной $m$. В настоящей работе исследуются числовые характеристики многообразий $var(A_m)$. Для этого в относительно свободных алгебрах многообразий $var(A_m)$ рассматриваются пространства полилинейных элементов, соответствующих левонормированным многочленам с фиксированной образующей на первой позиции.
Для каждого такого пространства как вполне приводимого модуля над групповой алгеброй симметрической группы определены все кратности в разложении соответствующего кохарактера в сумму неприводимых характеров.
На основе определений данных кратностей приводится метод вычисления кратностей, соответствующих полилинейным частям относительно свободных алгебр многообразий $var(A_m)$. С помощью приведенного метода вычисления кратностей для каждого $n \ge 1$ получены кодлины многообразий $var(A_m)$, $m \ge 2$. Для каждого многообразия $var(A_m)$, $m \ge 2$, в работе также описано соответствующее множество определяющих тождеств.

Ключевые слова: тождество, линейная алгебра, почти нильпотентное многообразие, экспоненциальный рост.

УДК: 512.5

Поступила в редакцию: 11.10.2017
Принята в печать: 15.12.2017

DOI: 10.22405/2226-8383-2017-18-4-305-324



Реферативные базы данных:


© МИАН, 2024