RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2017, том 18, выпуск 4, страницы 326–338 (Mi cheb615)

Эта публикация цитируется в 3 статьях

Алгебраические решётки в метрическом пространстве решёток

Е. Н. Смирноваa, О. А. Пихтильковаa, Н. Н. Добровольскийb, Н. М. Добровольскийc

a Оренбургский государственный университет
b Тульский государственный университет
c Тульский государственный педагогический университет им. Л. Н. Толстого

Аннотация: В работе дано новое общее определение алгебраической решётки. Доказывается, что любое рациональное преобразование алгебраической решётки снова будет алгебраической решёткой. Показано, что взаимная решётка к алгебраической решётки также будет алгебраической решёткой, соответствующей тому же чисто-вещественному алгебраическому полю $F_s$ над полем рациональных чисел $\mathbb{Q}$.
Следуя за Б. Ф. Скубенко, изучаются фундаментальные системы из чисто-вещественного алгебраического поля $F_s$ над полем рациональных чисел $\mathbb{Q}$. Показана связь между фундаментальными системами алгебраических чисел и алгебраическими решётками.
В работе доказаны оценки для норм матрицы перехода от произвольной невырожденной матрицы к рациональной приближающей матрицы. С помощью леммы об оценки нормы матрицы перехода и обратной матрицы перехода, связывающих произвольную невырожденную матрицу и невырожденную рациональную приближающую матрицу, в работе показано, что множество алгебраических решёток всюду плотно в метрическом пространстве решёток.
Доказанная теорема является частным случаем более общей теоремы о том, что для любой решётки $\Lambda\in PR_s$ множество всех решёток рационально связанных с решёткой $\Lambda$ всюду плотно в $PR_s$.
Аналогом данной теоремы является утверждение что для произвольной точки общего положения из $\mathbb{R}^s$ соответствующее $s$-мерное рациональное арифметическое пространство будет всюду плотно в $s$-мерном вещественном арифметическом пространстве $\mathbb{R}^s$.

Ключевые слова: алгебраические решётки, метрическое пространство решёток.

УДК: 511.42

Поступила в редакцию: 17.09.2017
Принята в печать: 15.12.2017



© МИАН, 2024