RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2018, том 19, выпуск 1, страницы 124–137 (Mi cheb626)

Эта публикация цитируется в 3 статьях

Граничное поведение и задача аналитического продолжения одного класса рядов Дирихле с мультипликативными коэффициентами как целых функций на комплексную плоскость

В. Н. Кузнецовa, О. А. Матвееваb

a Саратовский государственный технический университет им. Ю. А. Гагарина
b Саратовский государственный университет им. Н. Г. Чернышевского

Аннотация: Рассматривается класс рядов Дирихле с мультипликативными коэффициентами, определяющих функции, регулярные в правой полуплоскости комплексной плоскости и допускающие аппроксимацию полиномами Дирихле в критической полосе. Показано, что условие регулярности на мнимой оси позволяет аналитически продолжить такие ряды как целые функции на комплексную плоскость.
В основе доказательства этого факта лежат свойства аппроксимационных полиномов Дирихле и идеи Римана–Шварца, заложенные в принципе симметрии аналитического продолжения функций комплексного переменного. Указан класс рядов Дирихле, для которых выполняется условие аналитичности на мнимой оси.
Нужно отметить, что полученный в работе результат имеет непосредственное отношение к решению известной проблемы обобщенных характеров, поставленной Ю. В. Линником и Н. Г. Чудаковым в 1950м году.
Указанный в работе подход в задаче аналитического продолжения рядов Дирихле с числовыми характерами допускает обобщение на ряды Дирихле с характерами числовых полей. Это позвволяет получить аналитическое продолжение не используя функциональное уравнение $L$-функций Дирихле числовых полей на комплексную плоскость.
Отметим также, что изучаемому в работе классу рядов Дирихле принадлежат и ряды Дирихле, коэффициенты которых определяются неглавными обобщенными характерами. Можно показать, что для этих рядов выполняется условие аналитического продолжения. Еще в 1984 году В. Н. Кузнецов показал, что в случае аналитического продолжения таких рядов целым образом на комплексную плоскость с определенным порядком роста модуля, то будет иметь место гипотеза Н. Г. Чудакова о том, что обобщенный характер является характером Дирихле. Но окончательное решение проблемы обобщенных характеров, поставленной в 1950м году Ю. В. Линником и Н. Г. Чудаковым, будет приведено в следующих работах авторов.

Ключевые слова: аппроксимационные полиномы Дирихле, принцип симметрии Римана-Шварца, конформные отображения.

УДК: 511.3

DOI: 10.22405/2226-8383-2018-19-1-124-137



© МИАН, 2024