RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2018, том 19, выпуск 3, страницы 109–134 (Mi cheb683)

Эта публикация цитируется в 4 статьях

О двух асимптотических формулах в теории гиперболической дзета-функции решёток

Н. Н. Добровольскийab

a Тульский государственный педагогический университет им. Л. Н. Толстого
b Тульский государственный университет

Аннотация: В работе рассматриваются новые варианты двух асимптотических формул из теории гиперболической дзета-функции решёток.
Во-первых, получена новая асимптотическая формула для гиперболической дзета-функции алгебраической решётки, полученной растяжением в $t$ раз по каждой координате решётки состоящей из полных наборов алгебраически сопряженных целых алгебраических чисел, пробегающих кольцо целых алгебраических чисел чисто вещественного алгебраического поля степени $s$ для любого натурального $s\ge2$.
Во-вторых, получена новая асимптотическая формула для числа точек произвольной решётки в гиперболическом кресте.
В первом случае показано, что главный член асимптотической формулы для гиперболической дзета-функции алгебраической решётки выражается через детерминант решётки, регулятор поля и значения дзета-функции Дедекинда главных идеалов и её производные до порядка $s-1$. Впервые выписана явная формула остаточного члена и дана его оценка.
Во втором случае главный член асимптотической формулы выражается через объём гиперболического креста и детерминант решётки. Даётся явный вид остаточного члена и уточненная его оценка.
В заключении описана суть метода параметризованных множеств, использованного при выводе асимптотических формул.

Ключевые слова: алгебраическая решётка, гиперболическая дзета-функция алгебраической решётки, дзета-функция Дедекинда главных идеалов, гиперболический крест, точки решётки в гиперболическом кресте.

УДК: 511.3

Поступила в редакцию: 04.07.2018
Принята в печать: 15.10.2018

DOI: 10.22405/2226-8383-2018-19-3-109-134



Реферативные базы данных:


© МИАН, 2024