RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2019, том 20, выпуск 1, страницы 164–179 (Mi cheb724)

Эта публикация цитируется в 7 статьях

Моноиды натуральных чисел в теоретико-числовом методе в приближенном анализе

Н. Н. Добровольскийab, Н. М. Добровольскийb, И. Ю. Реброваb, А. В. Родионовb

a Тульский государственный университет, г. Тула
b Тульский государственный педагогический университет им. Л. Н. Толстого, г. Тула

Аннотация: В работе для каждого моноида $M$ натуральных чисел определён новый класс периодических функций $M_s^\alpha$, который является подклассом известного класса Коробова периодических функций $E_s^\alpha$. Относительно нормы $\|f(\vec{x})\|_{E_s^\alpha}$ класс $M_s^\alpha$ является несепарабельным банаховым подпространством класса $E_s^\alpha$.
Установлено, что класс $M_s^\alpha$ замкнут относительно действия интегрального оператора Фредгольма и на этом классе разрешимо интегральное уравнение Фредгольма второго рода. В работе получены оценки нормы образа интегрального оператора, которые содержат норму ядра и $s$-ю степень дзета-функции моноида $M$. Получены оценки на параметр $\lambda$, при которых интегральный оператор $A_{\lambda,f}$ является сжатием. Доказана теорема о представлении единственного решения интегрального уравнения Фредгольма второго рода в виде ряда Неймана.
В работе рассмотрены вопросы решения дифференциального уравнения с частными производными с дифференциальным оператором $Q\left(\frac{\partial }{\partial x_1},\ldots,\frac{\partial }{\partial x_s}\right)$ в пространстве $M^\alpha_{s}$, который зависит от арифметических свойств спектра этого оператора.
В работе обнаружен парадоксальный факт, что для моноида $M_{q,1}$ чисел сравнимых с 1 по модулю $q$ квадратурная формула с параллелепипедальной сеткой для допустимого набора коэффициентов по модулю $q$ точна на классе $M_{q,1,s}^\alpha$. Более того, это утверждение остается верным и для класса $M_{q,a,s}^\alpha$ с $1<a<q$, когда $q$ — простое число. Так как функции из класса $M_{q,a,s}^\alpha$ с $1<a<q$ не имеют нулевого коэффициента Фурье $C(\vec{0})$, то при простом $q$ сумма значений функции по узлам соответствующей параллелепипедальной сетки будет нулевой.

Ключевые слова: классы функций, квадратурные формулы, ряд Дирихле, дзета-функция моноида натуральных чисел.

УДК: 511.3

Поступила в редакцию: 04.12.2018
Принята в печать: 10.04.2019

DOI: 10.22405/2226-8383-2018-20-1-164-179



© МИАН, 2025