RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2019, том 20, выпуск 2, страницы 156–168 (Mi cheb759)

Эта публикация цитируется в 1 статье

Об одном обобщенном эйлеровом произведении, задающем мероморфную функцию на всей комплексной плоскости

Н. Н. Добровольскийa, М. Н. Добровольскийb, Н. М. Добровольскийc

a Тульский государственный университет (г. Тула)
b Геофизический центр РАН (г. Москва)
c Тульский государственный педагогический университет им. Л. Н. Толстого (г. Тула)

Аннотация: В работе изучается произведение Эйлера вида
$$ P_\pi(M,a(p)|\alpha)=\prod_{p\in P(M)}\left(1-\frac{a(p)}{p^{\alpha+\pi(p)}}\right)^{-1}, $$
где $M$ — произвольный моноид натуральных чисел, образованный множеством простых чисел $P(M)$.
Другим объектом изучения является ряд Дирихле вида
$$ f_\pi(M|\alpha)=\sum_{n\in M}\frac{1}{n^{\alpha +\pi(n)}}. $$

Оказывается, что они обладают совершенно разными свойствами. Ряд Дирихле$f_\pi(M|\alpha)$ определяет голоморфную функцию на всей комплексной плоскости.
А эйлерово произведение $P_\pi(M|\alpha)$ для моноида $M$, у которого множество простых $P(M)$ бесконечно, задает на всей комплексной плоскости мероморфную функцию, у которой имеется счетное множество особых вертикальных прямых, на каждой из которых счетное множество полюсов.
В заключении рассмотрена актуальная задача о нулях функции $f_\pi(M|\alpha)$.

Ключевые слова: дзета-функция Римана, ряд Дирихле, дзета-функция моноида натуральных чисел, эйлерово произведение.

УДК: 511.3

Поступила в редакцию: 18.05.2019
Принята в печать: 12.07.2019

DOI: 10.22405/2226-8383-2018-20-2-156-168



© МИАН, 2024