RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2019, том 20, выпуск 2, страницы 178–185 (Mi cheb761)

О значениях гипергеометрической функции с параметром из квадратичного поля

П. Л. Иванков

Московский государственный технический университет имени Н. Э. Баумана (г. Москва)

Аннотация: Для исследования арифметических свойств значений обобщенных гипергеометрических функций с рациональными параметрами обычно применяют метод Зигеля. Этим методом были получены наиболее общие результаты, относящиеся к упомянутым свойствам. Основной недостаток метода Зигеля состоит в невозможности его применения к гипергеометрическим функциям с иррациональными параметрами. В этой ситуации исследование обычно основывается на эффективной конструкции функциональной приближающей формы (в методе Зигеля существование такой формы доказывается с помощью принципа Дирихле). Построение и исследование приближающей формы является первым шагом в сложном рассуждении, которое ведет к получению арифметического результата.
Используя эффективный метод, мы сталкиваемся по крайней мере с двумя проблемами, которые в значительной степени сужают область его применимости. Во-первых, неизвестна более или менее общая конструкция приближающей формы для произведений гипергеометрических функций. Используя метод Зигеля, мы не имеем дела с такой проблемой. По этой причине приходится рассматривать лишь вопросы линейной независимости над тем или иным алгебраическим полем. Выбор этого поля является второй проблемой. Подавляющее большинство опубликованных результатов, относящихся к рассматриваемому кругу задач, имеет дело с мнимым квадратичным полем (или с полем рациональных чисел). Лишь в отдельных случаях удается провести соответствующее исследование для какого-либо другого алгебраического поля.
Мы рассматриваем здесь случай вещественного квадратичного поля. С помощью специального технического приема мы устанавливаем линейную независимость значений некоторой гипергеометрической функции с иррациональным параметром над таким полем.

Ключевые слова: гипергеометрическая функция, эффективная конструкция, линейная независимость, вещественное квадратичное поле.

УДК: 511.361

Поступила в редакцию: 01.04.2018
Принята в печать: 12.07.2019

DOI: 10.22405/2226-8383-2018-20-2-178-185



© МИАН, 2024