RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2019, том 20, выпуск 2, страницы 523–536 (Mi cheb788)

Эта публикация цитируется в 2 статьях

ИСТОРИЯ МАТЕМАТИКИ И ПРИЛОЖЕНИЙ

О численной оценке эффективных характеристик периодических ячеистых структур с использованием балочных и оболочечных конечных элементов с помощью CAE Fidesys

В. А. Левинa, К. М. Зингерманb, М. Я. Яковлевa, Е. О. Курденковаa, Д. В. Немтиноваa

a Механико-математический факультет Московского государственного университета имени М. В. Ломоносова (г. Москва)
b Тверской государственный университет (г. Тверь)

Аннотация: Развитие аддитивных технологий (3D-печати) сделало возможным изготовление деталей и изделий регулярной пористой и ячеистой структуры (с целью облегчения конструкции). При этом характерный размер ячейки намного меньше масштаба целого изделия. Численные прочностные и смежные с ними расчёты подобных конструкций требуют предварительной оценки эффективных характеристик такой ячеистой структуры. В данной статье представлена методика численной оценки эффективных упругих характеристик регулярных ячеистых структур, основанная на численном решении краевых задач теории упругости на ячейке периодичности. К ячейке последовательно прикладываются различные периодические граничные условия в виде связей, наложенных на перемещения противоположных граней ячейки. Для каждого вида граничных условий решается краевая задача теории упругости, полученное в результате решения которой поле напряжений осредняется по объёму. Эффективные свойства ячеистого материала оцениваются в виде обобщённого закона Гука.
В работе рассматриваются композиционные материалы на основе жёсткого решётчатого каркаса, заполненного более мягким материалом. Расчёты проводятся методом конечных элементов с помощью отечественной CAE-системы «Фидесис». При этом в ряде расчётов для моделирования решётчатого каркаса используются конечные элементы балочного типа. В некоторых расчётах, помимо каркаса и матрицы, учитывается наличие тонкого слоя связующего между ними. Этот слой моделируется при помощи конечных элементов оболочечного типа.
Приводятся графики сравнения результатов расчётов композиционных материалов с решётчатым каркасом с моделированием каркаса балочными элементами и результатов аналогичных расчётов, в которых каркас моделируется трёхмерными конечными элементами. Также приводятся графики сравнения результатов расчётов, в которых слой связующего моделируется оболочечными элементами, с результатами аналогичных расчётов, в которых связующее моделируется трёхмерными элементами. Графики показывают, что при достаточно тонких элементах каркаса (либо при достаточно тонком слое связующего) результаты получаются довольно близкими, что подтверждает применимость балочных и оболочечных элементов для численного решения таких задач.

Ключевые слова: аддитивные технологии, эффективные характеристики, механика деформируемого твёрдого тела, пористые и ячеистые структуры, CAE Fidesys.

УДК: 539.4, 519.6

Поступила в редакцию: 18.03.2019
Принята в печать: 12.07.2019

DOI: 10.22405/2226-8383-2018-20-2-523-536



© МИАН, 2024