О численной оценке эффективных характеристик периодических ячеистых структур с использованием балочных и оболочечных конечных элементов с помощью CAE Fidesys
Аннотация:
Развитие аддитивных технологий (3D-печати) сделало возможным изготовление деталей и изделий регулярной пористой и ячеистой структуры (с целью облегчения конструкции). При этом характерный размер ячейки намного меньше масштаба целого изделия. Численные прочностные и смежные с ними расчёты подобных конструкций требуют предварительной оценки эффективных характеристик такой ячеистой структуры. В данной статье представлена методика численной оценки эффективных упругих характеристик регулярных ячеистых структур, основанная на численном решении краевых задач теории упругости на ячейке периодичности. К ячейке последовательно прикладываются различные периодические граничные условия в виде связей, наложенных на перемещения противоположных граней ячейки. Для каждого вида граничных условий решается краевая задача теории упругости, полученное в результате решения которой поле напряжений осредняется по объёму. Эффективные свойства ячеистого материала оцениваются в виде обобщённого закона Гука.
В работе рассматриваются композиционные материалы на основе жёсткого решётчатого каркаса, заполненного более мягким материалом. Расчёты проводятся методом конечных элементов с помощью отечественной CAE-системы «Фидесис». При этом в ряде расчётов для моделирования решётчатого каркаса используются конечные элементы балочного типа. В некоторых расчётах, помимо каркаса и матрицы, учитывается наличие тонкого слоя связующего между ними. Этот слой моделируется при помощи конечных элементов оболочечного типа.
Приводятся графики сравнения результатов расчётов композиционных материалов с решётчатым каркасом с моделированием каркаса балочными элементами и результатов аналогичных расчётов, в которых каркас моделируется трёхмерными конечными элементами. Также приводятся графики сравнения результатов расчётов, в которых слой связующего моделируется оболочечными элементами, с результатами аналогичных расчётов, в которых связующее моделируется трёхмерными элементами. Графики показывают, что при достаточно тонких элементах каркаса (либо при достаточно тонком слое связующего) результаты получаются довольно близкими, что подтверждает применимость балочных и оболочечных элементов для численного решения таких задач.
Ключевые слова:аддитивные технологии, эффективные характеристики, механика деформируемого твёрдого тела, пористые и ячеистые структуры, CAE Fidesys.
УДК:
539.4, 519.6
Поступила в редакцию: 18.03.2019 Принята в печать: 12.07.2019