Аннотация:
В работе рассматривается одна из разновидностей радиотехнических систем, а именно — система частотно-фазовой автоподстройки частоты (ЧФАПЧ). Математическая модель такой системы описывается системой дифференциальных уравнений с цилиндрическим фазовым пространством. Для системы ЧФАПЧ определены условия формирования режимов скрытой синхронизации. Не смотря, на многочисленные работы, посвященные системам ЧФАПЧ, открытыми остаются вопросы нахождения скрытой синхронизации, определение механизмов ее возникновения, нахождение условий бифуркаций циклов и изучение их сценариев, возникновения сложно модулированных колебаний.
Условиями формирования срытой синхронизации являются наличие в системе фазовой автоподстройки частоты режимов биения, колебательно-вращательных циклов, наличие мультистабильности. Под мультистабильностью понимают сосуществование в фазовом пространстве нескольких аттракторов, в частности аттракторами могут являться предельные циклы. Один из случаев мультистабильности – фазовая мультистабильность, когда аттракторы отличаются друг от друга значениями разности фаз между колебаниями системы. Фазовое пространство в системах с фазовой мультистабильностью оказывается более сложно устроенным, чем в системах с единственным устойчивым предельным циклом. В формировании мультистабильности определяющую роль играют неустойчивые предельные множества соответствующие ненаблюдаемым в эксперименте колебаниям. В связи с этим актуальным является разработка методов определения мультистабильности и определения механизмов ее появления.
В связи свыше изложенным актуальной является задача разработки численных алгоритмов, позволяющих находить в радиотехнических системах сложномодулированные колебания и определять механизмы их возникновения.
Предложены аналитические методы определения скрытой синхронизации системы ЧФАПЧ, позволяющие разработать эффективные вычислительные методы изучения математических моделей радиотехнических систем с применением компьютерных технологий.