RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2020, том 21, выпуск 1, страницы 62–81 (Mi cheb861)

Эта публикация цитируется в 1 статье

О многообразиях представлений некоторых свободных произведений циклических групп с одним соотношением

В. В. Беняш-Кривецa, А. Н. Адмираловаb

a Белорусский государственный университет (г. Минск)
b ООО «СОФТКЛУБ» (г. Минск)

Аннотация: В работе исследуются многообразия представлений двух классов конечно порожденных групп. Первый класс состоит из групп с копредставлением
\begin{gather*} G = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g\mid\\ a_1^{m_1}=\ldots=a_s^{m_s}= x_1^2\ldots x_g^2 W(a_1,\ldots,a_s,b_1,\ldots,b_k)=1\rangle, \end{gather*}
где $g\ge 3$, $m_i\ge 2$ для $i=1,\ldots,s$ и $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ — элемент в нормальной форме в свободном произведении циклических групп $H=\langle a_1\mid a_1^{m_1}\rangle\ast\ldots\ast\langle a_s\mid a_s^{m_s}\rangle\ast\langle b_1\rangle\ast\ldots\ast\langle b_k\rangle$.
Второй класс состоит из групп с копредставлением
$$ G(p,q) = \langle a_1,\ldots,a_s,b_1,\ldots,b_k,x_1,\ldots,x_g,t\mid a_1^{m_1}=\ldots=a_s^{m_s}=1,\ tU^pt^{-1}=U^q \rangle, $$
где $p$ и $q$ — целые числа, такие, что $p>|q|\geq1$, $(p,q)=1$, $m_i\ge 2$ для $i=1,\ldots,s$, $g\ge 3$, $U=x_1^2\ldots x_g^2W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ и $W(a_1,\ldots,a_s,b_1,\ldots,b_k)$ — элемент, определенный выше.
Найдены неприводимые компоненты многообразий представлений $R_n(G)$ и $R_n(G(p,q))$, вычислены их размерности и доказано, что каждая неприводимая компонента является рациональным многообразием.

Ключевые слова: копредставление группы, многообразие представлений, размерность многообразия, рациональное многообразие.

УДК: 512.547

DOI: 10.22405/2226-8383-2018-21-1-62-81



© МИАН, 2024