Аннотация:
На поверхности, гомеоморфной $2$-мерной сфере, изучается натуральная механическая система с магнитным полем, инвариантная относительно $S^1$-действия. Для особых точек ранга $0$ отображения момента получен критерий невырожденности, определен тип невырожденных особых точек (центр-центр и фокус-фокус), описаны бифуркации типичных вырожденных особых точек (интегрируемая гамильтонова бифуркация Хопфа двух типов). Для семейств особых окружностей ранга $1$ отображения момента (состоящих из относительных положений равновесия системы) получено их параметрическое задание, доказан критерий невырожденности, определен тип невырожденных (эллиптические и гиперболические) и типичных вырожденных (параболические) особых окружностей. Получено параметрическое задание бифуркационной диаграммы отображения момента. Описаны геометрические свойства бифуркационной диаграммы и бифуркационного комплекса в случае, когда задающие систему функции находятся в общем положении. Определена топология неособых изоэнергетических $3$-мерных многообразий, описана топология слоения Лиувилля на них с точностью до грубой лиувиллевой эквивалентности (в терминах атомов и молекул Фоменко). Описаны “расщепляющиеся” гиперболические особенности ранга 1, являющиеся топологически неустойчивыми бифуркациями слоения Лиувилля.