Аннотация:
По теореме Абеля лемнискату Бернулли можно разделить циркулем и линейкой на $n$ равных дуг, где $n=2^kp_1\ldots p_m$ и $p_j$ — попарно различные простые числа Ферма. Важное свойство лемнискаты, используемое в доказательстве теоремы Абеля, состоит в том, что она допускает параметризацию рациональными функциями, в которой длина дуги выражается эллиптическим интегралом первого рода. Жозеф Альфред Серре предложил способ описывать все такие кривые в работе [1]. В работах [1, 2, 3] он нашел целые серии таких кривых и описал их важные свойства. С тех пор других примеров кривых с рациональной параметризацией и длиной дуги, выражающейся эллиптическим интегралом первого рода, известно не было. В данной заметке мы строим новый пример такой кривой.