Аннотация:
В статье предложен метод спектральных элементов, построенных на полиноме Лежандра для плоских стационарных задач упруго-пластического течения при больших деформациях. Метод спектральных элементов основывается на вариационном принципе, методе Галеркина. Решение указанных задач обладает феноменом локализации пластических деформаций в узких областях — линиях скольжения. Исследована возможность применения спектрального элемента для численного решения указанных задач с разрывными решениями. Условие текучести материала — критерий Мизеса. Напряжения интегрируются методом радиального возврата по неявной обратной схеме Эйлера. Система нелинейных алгебраических уравнений решается итерационным методом Ньютона. Приведено численное решение примера растяжения полосы, ослабленной вырезами с круговым основанием, в плоском напряженном и плоском деформированном состояниях. Получены кинематические поля и предельная нагрузка. Приведены сравнения численных результатов с аналитическим решением, полученным для несжимаемых сред, построенным методом характеристик.
Ключевые слова:спектральный элемент, феномен локализации, пластичность, метод характеристик, конечные деформации, итерационный метод Ньютона.
УДК:517.3
Поступила в редакцию: 11.06.2020 Принята в печать: 22.10.2020