Аннотация:
Для произвольного поля ${\mathbb F}$ мы рассматриваем коммутативную неассоциативную четырёхмерную алгебру ${\mathfrak M}$ камня, ножниц и бумаги с единичным элементом над полем ${\mathbb F}$ и доказываем, что образ произвольного неассоциативного мультилинейного полинома над ${\mathfrak M}$ является линейным пространством. Тот же вопрос мы рассматриваем и для двух подалгебр: алгебры камня, ножниц и бумаги без единицы, а также, алгебры элементов нулевого следа и нулевой скалярной части. Кроме того, в работе поставлены задачи и рассмотрены вопросы о возможных образах однородных полиномов на этих алгебрах.