RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2020, том 21, выпуск 4, страницы 270–301 (Mi cheb968)

Эта публикация цитируется в 2 статьях

Обобщённая формула бинома Ньютона и формулы суммирования

В. Н. Чубариков

Московский государственный университет имени М. В. Ломоносова (г. Москва)

Аннотация: В основе работы лежит формула бинома Ньютона и её обобщения на последовательности многочленов биномиального типа. Даны применения к обобщённой проблеме Варинга (Хуа Ло-кен) и проблеме Гильберта – Камке (Г.И.Архипов). Доказана формула Тейлора – Маклорена для многочленов и гладких функций и даны её приложения в численном анализе (решение уравнений методом касательных Ньютона, лемма Гензеля в полных неархимедовских полях, приближенное вычисление значений гладких функций в точке). Даётся аналог формулы бинома Ньютона для многочленов Бернулли и доказывается формула Эйлера — Маклорена суммирования значений функции по целым точкам, выведена формула Пуассона суммирования значений функции. Рассмотрены примеры последовательностей многочленов биномиального типа (степени, нижние и верхние факториальные степени, многочлены Абеля и Лагерра). Найдены биномиальные свойства многочленов Аппеля и Эйлера. Для многочленов и гладких функций от нескольких переменных доказана формула Тейлора, получены многомерные аналоги формул Эйлера – Маклорена и Пуассона суммирования значений функции по решётке. Рассмотрен многомерный аналог этих формул для решётки в многомерном комплексном пространстве. Доказаны ряд свойств последовательности многочленов биномиального типа от нескольких переменных.

Ключевые слова: бином Ньютона, последовательность многочленов биномиального типа, нижние и верхние факториальные многочлены, многочлены Абеля, Лагерра, Аппеля, Бернулли, Эйлера, формулы Тейлора–Маклорена, формулы суммирования Эйлера–Маклорена.

УДК: 511.3

Поступила в редакцию: 04.04.2019
Принята в печать: 22.10.2020

DOI: 10.22405/2226-8383-2018-21-4-270-301



© МИАН, 2024