Аннотация:
В статье рассматривается обратная задача об определении законов неоднородности упругого покрытия абсолютно жесткого цилиндра, находящегося в плоском волноводе, одна граница которого — абсолютно жесткая, а другая — акустически мягкая. Полагается, что волновод заполнен идеальной жидкостью. Вдоль стенок волновода по нормали к поверхности цилиндрического тела распространяется гармоническая звуковая волна давления, возбуждаемая заданным распределением источников на сечении волновода, расположенного на конечном расстоянии от оси цилиндра. Определены параметры неоднородности покрытия, обеспечивающие наименьшее звукоотражение.
Решение обратной задачи получено на основе решения прямой задачи дифракции.
Зависимости плотности и модулей упругости материала покрытия от радиальной координаты аппроксимированы многочленами третьей степени.
Построены функционалы,определенные на классе кубических функций и выражающие усредненную интенсивность рассеяния звука в заданном сечении волновода при фиксированной частоте или в некотором диапазоне частот.
С помощью генетического алгоритма осуществлена минимизация функционалов. Получено аналитическое описание оптимальных законов неоднородности покрытия цилиндра для обеспечения минимального звукоотражения.