Аннотация:
Получена теорема существования периодического решения обыкновенного дифференциального уравнения второго порядка с разрывной нелинейностью в резонансном случае. Решения рассматриваются в смысле дифференциального включения. Предполагается, что нелинейность борелева (mod 0) и ограниченная. На бесконечности она удовлетворяет одномерному аналогу условия Ландесмана — Лазера для резонансных эллиптических краевых задач. Операторная постановка рассматриваемой задачи приводит к проблеме существования неподвижных точек у многозначного компактного отображения. Для описания овыпукливания оператора Немыцкого, порождаемого нелинейностью, используются результаты М. А. Красносельского и А. В. Покровского. Наличие неподвижной точки устанавливается с помощью многозначной версии метода Лере — Шаудера.