RUS  ENG
Полная версия
ЖУРНАЛЫ // Современная математика и ее приложения // Архив

Совр. матем. и ее приложения, 2013, том 88, страницы 91–150 (Mi cma373)

Эта публикация цитируется в 5 статьях

Классификация случаев интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле при наличии следящей силы

М. В. Шамолин

Институт механики Московского государственного университета им. М. В. Ломоносова, Москва, Россия

Аннотация: Работа представляет собой обзор по полученным ранее, а также новым случаям интегрируемости в динамике четырёхмерного твёрдого тела, находящегося в неконсервативном поле сил. Исследуемые задачи описываются динамическими системами с так называемой переменной диссипацией с нулевым средним.
Задача поиска полного набора трансцендентных первых интегралов систем с диссипацией также является достаточно актуальной, и ей было ранее посвящено множество работ. Введен в рассмотрение новый класс динамических систем, имеющих периодическую координату. Благодаря наличию в таких системах нетривиальных групп симметрий, показано, что рассматриваемые системы обладают переменной диссипацией с нулевым средним, означающей, что в среднем за период по имеющейся периодической координате диссипация в системе равна нулю, хотя в разных областях фазового пространства в системе может присутствовать как подкачка энергии, так и её рассеяние. На базе полученного материала проанализированы динамические системы, возникающие в динамике четырёхмерного твёрдого тела. В результате обнаружен ряд случаев полной интегрируемости уравнений движения в трансцендентных функциях и выражающихся через конечную комбинацию элементарных функций.

УДК: 517+531.01


 Англоязычная версия: Journal of Mathematical Sciences, 2015, 204:6, 808–870


© МИАН, 2024