Аннотация:
В предлагаемой статье изучаются интегродифференциальные уравнения с неограниченными операторными коэффициентами в гильбертовом пространстве. Главная часть рассматриваемых уравнений представляет собой абстрактное гиперболическое уравнение, возмущенное слагаемыми, содержащими вольтерровы интегральные операторы. Указанные уравнения представляют собой абстрактную форму интегродифференциального уравнения Гуртина–Пипкина, описывающего процесс распространения тепла в средах с памятью, процесс распространения звука в вязкоупругих средах, а также возникают в задачах усреднения в перфорированных средах (закон Дарси).
Устанавливается корректная разрешимость начально-краевых задач для указанных уравнений в весовых пространствах Соболева на положительной полуоси.
Анализируются спектральные вопросы для оператор-функций, являющихся символами указанных уравнений. Исследуется спектр абстрактного интегродифференциального уравнения Гуртина–Пипкина.