Аннотация:
В настоящей работе рассматриваются локально минимальные и экстремальные сети в нормированных пространствах. Известно, что в случае евклидового пространства эти классы совпадают, и длина локально минимальной сети может быть найдена по координатам граничных вершин и направлениям граничных ребер (формула Максвелла). Более того, как показали Иванов и Тужилин [3], длина локально минимальной сети в евклидовом пространстве может быть найдена по координатам граничных вершин и структуре сети. В случае произвольной нормы не каждая локально минимальная сеть является экстремальной, и аналог упомянутой выше формулы имеет место только для экстремальных сетей, что является основным результатом настоящей работы. Кроме того, мы обобщаем формулу Максвелла на случай экстремальных сетей в нормированных пространствах и явно приводим нормирующие функционалы, фигурирующие в данной формуле, для некоторых классов нормированных пространств.