Аннотация:
В работе вводится понятие антикомпактного множества (антикомпакта) в пространствах Фреше. Детально исследованы свойства как самих антикомпактов, так и шкалы банаховых пространств, порожденных антикомпактами. Особо рассмотрена система антикомпактных эллипсоидов в гильбертовых пространствах. Доказано существование системы антикомпактов во всяком сепарабельном пространстве Фреше $E$. На базе построенной теории получены аналоги теоремы Ляпунова о выпуклости и компактности образа векторной меры в классе сепарабельных пространств Фреше: показана выпуклость и компактность замыкания множества значений векторной меры в некотором пространстве $E_{\overline C}$, порожденном некоторым антикомпактом $\overline C$. Также исследована проблема недифференцируемости интеграла Петтиса по верхнему пределу. Получены условия дифференцируемости неопределенных интегралов Петтиса в терминах новых характеристик – слабой интегральной ограниченности, а также $\sigma$-компактной измеримости. Доказан аналог теоремы Лебега о дифференцируемости неопределенного интеграла Петтиса для всякого сильно измеримого подынтегрального отображения.