Аннотация:
В работе изучается корректная разрешимость начальных задач для абстрактных интегродифференциальных уравнений с неограниченными операторными коэффициентами в гильбертовом пространстве, а также проводится спектральный анализ оператор-функций, являющихся символами указанных уравнений. Изучаемые уравнения представляют собой абстрактную форму линейных интегродифференциальных уравнений в частных производных, возникающих в теории вязкоупругости и имеющих ряд других важных приложений. Получены результаты о корректной разрешимости упомянутых интегродифференциальных уравнений в весовых пространствах Соболева вектор-функций со значениями в гильбертовом пространстве, заданных на положительной полуоси. Установлена локализация и структура спектра оператор-функций, являющихся символами этих уравнений.