Аннотация:
Рассматривается уравнение диффузии в бесконечной $1$-периодической среде. Для фундаментального решения находятся аппроксимации при больших значениях времени $t$. Погрешность аппроксимаций имеет поточечную и интегральную оценки порядка $O(t^{-\frac{d+j+1}2})$ и $O(t^{-\frac{j+1}2}),$$j=0,1,\dots$, соответственно. Аппроксимации строятся из известного фундаментального решения усредненного уравнения, имеющего постоянные коэффициенты, и его производных, а также решений серии вспомогательных задач на ячейке периодичности. Серия задач на ячейке выписывается рекуррентным образом. Эти результаты используются для построения аппроксимаций операторной экспоненты исходного уравнения диффузии с оценками погрешности по операторным нормам в $L^p$-пространствах, $1\le p\le\infty$. Для аналогичного уравнения в $\varepsilon$-периодической среде ($\varepsilon$ – малый параметр) получаются аппроксимации операторной экспоненты в $L^p$-операторных нормах при фиксированном времени с погрешностью порядка $O(\varepsilon^n)$, $n=1,2,\dots$.