Аннотация:
В работе представлен краткий обзор методов динамического анализа и численного исследования пространственных нелокальных эффектов, возникающих за счет запаздывания, в биологических моделях. А именно в диффузионных моделях некоторой популяции, заключенной в ограниченную или неограниченную область. Нелокальность (или среднее взвешенное) возникает при учете местоположения особей в предыдущие моменты времени. Мы рассмотрим два подхода к корректному определению пространственных ядер усреднения, а также соберем воедино некоторые последние достижения в области качественного и численного анализов нелинейной динамики, включая существование, единственность (с точностью до некоторого преобразования) и устойчивость фронта бегущей волны, периодические пространственно-временные модельные уравнения в неограниченных областях, а также линейную устойчивость, ограниченность, глобальную сходимость и бифуркации решений модельных уравнений в ограниченных областях.