Аннотация:
В этой работе получены критерий ограниченности максимальных операторов, связанных с гладкими гиперповерхностями, а также точное значение показателя ограниченности этих операторов, связанных с произвольными выпуклыми аналитическими гиперповерхностями в случае, когда высота гиперповерхности в смысле А. Н. Варченко больше двух. Кроме того, получено точное значение показателя ограниченности для вырожденных гладких гиперповерхностей, т.е. для гиперповерхностей, удовлетворяющих условиям классической теоремы Хартмана–Ниренберга. Полученные результаты подтверждают справедливость гипотезы Стейна–Иосевича–Соера для произвольных выпуклых аналитических гиперповерхностей, а также для гладких вырожденных гиперповерхностей. В статье также обсуждаются некоторые смежные проблемы теории осцилляторных интегралов.