Гладкость обобщенных решений задачи Дирихле для сильно эллиптических функционально-дифференциальных уравнений с ортотропными сжатиями на границе соседних подобластей
Аннотация:
Статья посвящена изучению гладкости обобщенных решений первой краевой задачи для сильно эллиптического функционально-дифференциального уравнения, содержащего в старшей части преобразования ортотропного сжатия аргументов искомой функции. Задача рассматривается в круге, коэффициенты уравнения постоянные. Под ортотропным сжатием понимается различное сжатие по различным переменным. Найдены в явном виде условия сохранения гладкости на границах соседних подобластей, образованных действием группы преобразования сжатия на круг, при любой правой части из пространства Лебега.