Аннотация:
Исследуется начально-граничная задача для неоднородного гиперболического уравнения второго порядка в полуполосе плоскости с постоянными коэффициентами, содержащего смешанную производную, с нулевым и ненулевым потенциалом. Данное уравнение является уравнением поперечных колебаний движущейся конечной струны. Рассматривается случай нулевой начальной скорости и закрепленных концов (условия Дирихле). Предполагается, что корни характеристического уравнения простые и лежат на вещественной оси по разные стороны от начала координат. Определяется классическое решение начально-граничной задачи. В случае нулевого потенциала формулируется теорема единственности классического решения и дается формула для решения в виде ряда, членами которого являются контурные интегралы, содержащие исходные данные задачи. На основе этой формулы вводятся понятия обобщённой начально-граничной задачи и обобщённого решения. Формулируются основные теоремы о конечных формулах для обобщённого решения в случае однородной и неоднородной задач. Для доказательства этих теорем применяется подход, использующий теорию расходящихся рядов в понимании Л. Эйлера, предложенный А. П. Хромовым (аксиоматический подход). С помощью этого подхода, на основе формул для решений в виде ряда, доказываются сформулированные основные теоремы. Далее, как приложение полученных основных теорем, доказывается теорема о существовании и единственности обобщённого решения начально-граничной задачи при наличии ненулевого суммируемого потенциала и дается формула для решения в виде экспоненциально сходящегося ряда.
Ключевые слова:начально-граничная задача, гиперболическое уравнение, волновое уравнение, уравнение с частными производными, полуполоса, смешанная производная в уравнении, потенциал общего вида, обобщённое решение.