Аннотация:
В статье изучается задача о нахождении по выбранной последовательности комплексных чисел, стремящейся к бесконечности, максимально широкого в заданной шкале класса целых функций, для которого данная последовательность является множеством единственности. В рамках этой общей задачи установлены теоремы единственности в различных классах целых функций, выделяемых ограничениями на тип и индикатор при уточненном порядке. В частности, дополняется доказанная ранее теорема единственности, использующая понятие круга Сильвестра индикаторной диаграммы целой функции экспоненциального типа. Обсуждается точность полученных результатов и их связь с известными фактами.
Ключевые слова:круг Сильвестра, индикаторная диаграмма, целые функции, множество единственности.