RUS  ENG
Полная версия
ЖУРНАЛЫ // Communications in Mathematical Physics // Архив

Comm. Math. Phys., 2013, том 320, выпуск 2, страницы 469–473 (Mi cmph7)

Эта публикация цитируется в 11 статьях

Cosmic censorship of smooth structures

V. Chernova, S. Nemirovskibc

a Department of Mathematics, 6188 Kemeny Hall, Dartmouth College, Hanover, NH 03755, USA
b Steklov Mathematical Institute, 119991 Moscow, Russia
c Mathematisches Institut, Ruhr-Universität Bochum, 44780 Bochum, Germany

Аннотация: It is observed that on many $4$-manifolds there is a unique smooth structure underlying a globally hyperbolic Lorentz metric. For instance, every contractible smooth $4$-manifold admitting a globally hyperbolic Lorentz metric is diffeomorphic to the standard $\mathbb{R}^4$. Similarly, a smooth $4$-manifold homeomorphic to the product of a closed oriented $3$-manifold $N$ and $\mathbb{R}$ and admitting a globally hyperbolic Lorentz metric is in fact diffeomorphic to $N\times\mathbb{R}$. Thus one may speak of a censorship imposed by the global hyperbolicty assumption on the possible smooth structures on $(3+1)$-dimensional spacetimes.

Поступила в редакцию: 17.02.2012
Принята в печать: 23.09.2012

Язык публикации: английский

DOI: 10.1007/s00220-013-1686-1



Реферативные базы данных:


© МИАН, 2025